
Click mouse here to Install

Click mouse here to Print

Click mouse here to Load

Word for Windows Macros

Gadfly ToolBox
By Guy Gallo

March 30, 1992
version 1.0

Introduction§ · 1

Contents

Introduction 5

What is it?..5
Encryption and Copyright..5
Pricing..6
ShareWare..6

Gadfly Toolbox Reference 7

ChangeQuoteDash...7
ChangeQuoteDash: dialog box:...9

ChangeTool..9
ChangeTool: dialog box:...9

ChooseDirectory..10
How it works..13
Installation Tips...13
Converting from Earlier versions of ChooseDirectory........................13
Advanced...14
Warning:..14

ControlRun...15
ControlRun: dialog box:..15

CopyMacroActive..15
CopyMacroActive: dialog box...15

CreateOutlineDoc..16
CreateOutlineDoc: dialog box..16

DeleteIdleStyles...17
EncryptMacros...18
EncryptTemplate..18
FiddleNotes..18
FileTemplate..18
MacroKey..20

Limitations:..21
MakeBook..22
MakeWordBook...23
ManageKeys...23
ManageMacros...24
OpenMRUList..25
PrintRange..25
ReInsertFootnotes..26

Introduction§ · 2

SyncStyles..27
SyncStyles: dialog box:...27

ToggleHidden..27
ToggleOutline..28
TogglePictures...28
ToggleRevision..28
ToggleStyleBar..28
ToggleViewTools..28

Setting tolerance for toggle..28
Setting default minimum for on:...29

ToggleWindow..29
WindowStack...29
WinSideBySide..29

gLib 30

Overview..30
Main dialog box...30
gLib Reference...31

ActivatePartial(Doc$)..31
CheckLib..31
Chew$(Source$,Marker$)..31
CountChar(Source$, Char$)..32
fExist(FullPathName$)..32
fFileCount(FileSpec$)...32
fFileName$(b$)..32
fFileNameExt$(b$)..32
fStr$(Num)...32
GetDocDir$..32
GetFile(FullName$,Dir$,Default$)...32
GetPath$(Source$)...32
GetTemplate$...33
gLibInstalled(Macro$)...33
gMsg(Msg$,Title$)..33
gQuery(Msg$,Title$)...33
HasKey(Macro$,Context)..33
Inject$(Source$, New$, Place)..33
IsMacroPane([MacroName$])...33
KeyDescription$(KeyCode)..33
lHelp(HelpFileName$)..33
lcHelp(ContextNumber,HelpFileName$)..34
ListMacros$(Context,All)..34
LoopMsg(Message$)...34
MacroExist(Macro$)..34
NoSlash(Source$)..35
NukeTopMenu...35
Replace$(Source$, Old$, New$)...35

Introduction§ · 3

ResetTopMenu...35
Reverse$(Source$, Marker$)...35
SameFormat...35
SelectSameFormatRight..35
Split(Source$, Marker$, First$, Second$)...36
Trim$(Source$, ZapChar$)..36
Wait(Seconds)..36

Glossary of Terms 37

Index 39

Introduction§ · 4

Introduction

What is it?
This collection of macros began humbly enough during the initial
release of Word for Windows as a group of useful toggle macros, a
couple of window arrangement macros, and an envelope printing
macro.

Many, if not most, of those macros came about either because I
wanted them for my own use, or because someone on the Word for
Windows forum of CompuServe suggested thus and such could not be
done (and I took the bait). Many came about as a direct result of
conversations with James Gleick, Barry Simon, and Robert Enns (the
original other WinWord Gadfly Team members). I’d like, again, to
thank them and all the other members of that remarkable forum, for
their help and suggestions.

As the macros accumulated, and they became more and more
complicated—both in terms of their functionality, and in terms of their
“error handling”—these macros graduated from hobby to product.
With the gathering of the orginal GJGMAx.ZIP files into
GTOOLS.ZIP (and the addition of several new macros), they became
the first ShareWare incarnation of my work.

Some new macros were kept separate, either because of functional
specificity (like the printer related macros or the Current DDE macro
GetAddress) or because they were so much larger and more “standa-
alone-ish” than the others (like ChooseDirectory or MacroKey).
This resulted in a bit of confusion.

With this release of what was GTOOLS, with a new name—
GTOOLBOX—I am gathering the vast majority of my Word for
Windows macros into a single package. And requesting a single
registration price for all.

EncryptionXE "Encryption"§ and Copyright
The macros in this package are not encrypted. This means you can
easily modify their functionality to suite your particular preferences.
And, if so inclined, you can learn quite a lot about WordBASIC by
studying these macros.However, distributing any modified versions of
these macros, in any manner, is strictly prohibited.

If you are interested in a site license, or a license to distribute
modified/customized versions of these macros to your clients, please
contact the author.

XE "Price"§Pricing
New registrations

Registration Only $39.95

Registration and Disk $39.95 + $5.00 shipping

XE "Upgrading"§Upgrades from previous versions

There is no charge for registering GTOOLBOX if you have registered
any two (or more) of the previously released packets:

GTOOLS2 (Gtools), GPROE (PrintRange), GCDIR
(ChooseDirectory) or GMKEY (MacroKey)

If you have registered any one of the above packets, the upgrade to
gToolBox is $10.00

XE "Updates"§Incremental updates

There may be incremental releases—to fix any bugs found in this
release, to tweak performance, to add additional macros—between
now and the next major release of Word for Windows. These
“updates” will be free to all registered users.

XE "ShareWare"§ShareWare
This product is being distributed as ShareWare. This means you are
under no obligation to pay for the product unless you continue to use
it.

But if you do use (and learn from) these macros, please register. A
great deal of effort went into their construction. Your registration will
support the continuation of the Gadfly Macros series...

You are encouraged to distribute the package, as is, to other Word for
Windows users.

Gadfly Toolbox Reference

XE "ChangeQuoteDash"§ChangeQuoteDash
Purpose

(Alt-Shift-Q for Demo)

An EM is a unit of
measurement taken from
the character box, as
filled by the letter “M”.
An EMDash is on em
wide. An ENDash is
one-half of an EMDash.

ChangeQuoteDash allows you to easily toggle between Typewriter
quotation marks and Typeset (Publishing) quotation marks. It also
allows you to toggle between double hyphen and EMDash and single
hyphen and ENDash.

Normally, when you type a quotation mark, Word for Windows inserts
Character #34: "This is surrounded by normal quotation marks."
And, similarly, when you insert a single quotation mark, Word for
Windows inserts Character #39, the Apostrophe: For instance:

"We're at the 'mercy' of our computers!" he said with chagrin.

The contraction apostrophe and the single quotation marks around
‘mercy’ are the same character.

Similarly, the opening and closing double quotation marks around the
phrase are the same.

These marks are sometimes called Typewriter quotation marks.

Well, that’s all you need if you are using a fixed font such as Courier
or Prestige Elite. These fonts don’t distinquish between Open and
Close Quotation marks, However, proportionally spaced fonts, such
as Times Roman, do.

Compare:

"This is 'Fixed' type quotation marks."

“This is ‘Publishing’ type quotation marks.”

Word for Windows provides a way to insert individuatl Publishing
quotation marks with InsertSymbol command..

Gadfly Toolbox Reference§ · 7

There is also a macro in the newmacros.doc called SmartQuotes
which allows you to turn Publishing quotation marks on and off.
(Note: ther is an improved version of SmartQuotes available on CIS
under the named GSMART.ZIP. It’s FreeWare.)

However, what if you don’t always want Publishing Quotation marks?
And what if you started a document without them and now you do
want them?

ChangeQuoteDash is a SmartQuotes post processor.

A possible way, if you are like me, to use this macro, is before
printing—that is, enter text without SmartQuotes installed, and then
when you want a typeset style copy with Publishing characters, run
this macro. If you don’t save after printing, then the document will
remain in typewriter format.

Conventions:
EmDash:

For the proper usage of
EM and ENDashes, see
the Chicago Manual of
Style, page 150.

An EMDash should be represented, in Typewriter style, by two
hyphens with no spaces before of after. Compare:

There is nothing--not a thing--wrong with this line, aside
from silliness.
This line -- for what it’s worth -- has spaces on either side
of the dash.

EnDash:

An ENDash is not interchangeable with all single hyphens. It should
be used in cases such as date ranges:

1990-1992

—would require an ENDash in Typeset style. Whereas compound
words or hyphendation breaks would not.

For this reason, incidently, the option to change single hyphens to
ENDashes requires user intervention. You have to confirm each
change.

Non-breaking hyphens

For the purposes of this macro, regular hyphens and non-breaking
hyphens (entered with Ctrl+Shift+Hyphen) are equivalent. That is, a
pair of non-breaking hyphens will be converted to an EMDash, and a
single non-breaking Hyphen will be presented as an ENDash
candidate. (Entering Non-breaking hyphens is covered on page 90 of
the manual).

NOTE: since double hyphen pairs (Typewriter EMDash) should never
be broken at a line end and a hyphen that would convert to an

Gadfly Toolbox Reference§ · 8

EMDash should never be separated from the two terms it separates,
when you convert from Typeset back to Typewriter, the macro will
use the non-breaking hyphen, not the normal hyphen.

Scope: (what it changes...)
ChangeQuoteDash makes the following assumptions about what you
which it to change:

· If the selection, at the time of invoking the macro, is an
insertion point (i.e. a blinking line), ChangeQuoteDash
will operate on the entire document.

· If the selection is a solid block/selection (i.e. you have
marked a section of text from the entire document),
ChangeQuoteDash will operate only on that selection.

This is useful in the following scenario: You have a document, such
as a manual, the majority of which is proportionally spaced (and
therefore Typeset mark qualified). But there is a section of the manual
that is formatted in Courier or LinePrinter—this section might be, for
instance, a macro listing. In that section you do not want typeset
marks. You want normal typewriter marks. Simply select the section
of the document to toggle to typewriter and run the macro again.

ChangeQuoteDash: dialog box:
This dialog box consists of three option buttons and a check box.

To typeset (publishing) characters

This button will change all normal inch/pound, typewriter
quotation marks to the curly quotation marks used by
typesetters.

It also automatically converts all hyphen and non-breaking
hyphen pairs to an EMDash.

To Typewriter (normal) characters

This button will change all typeset type quotation marks back
to the normal typewriter type.

It will also change all EMDashes to a pair of non-breaking
hyphens, and all ENDashes to a single non-breaking
hyphen.

Single Hyphen to EnDash

This option will begin a search and replace for all remaining
hyphens and prompt the user if the found hyphen or non-
breaking hyphen should be replaced with an ENDASH.

This last option only converts from hyphens to EnDashes. It

Gadfly Toolbox Reference§ · 9

should be run AFTER the first option (to typeset) and need
not be run at all when converting back to typewriter).

Save to new file

If this box is check the macro will perform a FileSaveAs so
that you can create a copy of your document before
execution.

XE "ChangeTool"§XE "ToolBar"§ChangeTool
(Ctrl-Shift-T to demo)

One of the limitations of the built in ToolsOptionsToolBar command
is that if you want to rearrange the icons in either NORMAL.DOT or a
template you have to literally remove and replace each one.

This macro allows you to insert a new tool and move the rest to the
right, replace a tool with another, replace a tool with a space, or
remove a tool altogether.

ChangeTool: dialog box:
The dialog box consists of six parts:

1) a listbox containing the Current ToolBar

2) to the right of this are two PushButtons and a checkbox which
control the modification to be made; they are:

CheckBox:

Shift current tools
This checkbox determines what will happen to the existing
tools when either of the other modification buttons are
selected.
With Insert this shifts current tools to the right.
With Delete this shifts current tools to the left.

Buttons:

Insert new tool - selecting this button will place the new tool
at the current location.
If Shift current tools is active (checked) the new tool will
move existing tools to the right. If Shift current tools is
inactive (not-checked) the new tool will replace the
currently selected tool.

Delete selected tool - selecting this button will remove the
selected tool.
If Shift current tools is active (checked) the existing tools
will shift to the left. If Shift current tools is inactive (not-

Gadfly Toolbox Reference§ · 10

checked) the selected tool will be “deleted” and replaced by
a Space.

3) an Editbox titled Macro for tool

Type the macro to add to the ToolBar in this editbox. By
default the proposed macro is [space].

4) To the right of this editbox is a group box containing one (if the
current context is limited to NORMAL.DOT) or two (if the current
document is based on a template and therefore there are two contexts:
global and template) buttons.

Selecting either of these buttons will display a list of the
available macros.

There is also a checkbox Include commands. This checkbox
will list the built in Word for Windows commands as well
as any user macros.

Once the list of macros is displayed the selected macro is
placed in the edit box.

Limitation: the list of macros will not appear sorted. User
macros are sorted according to their creation. The internal
macro/commands are sorted according to some inscrutable
whim on the part of the Word Development Team.

5) a ListBox of available icons.

Since Word for Windows dialog boxes cannot contain bitmaps,
there is no way to actually include the toolbar icons. Since
the ToolsOptionsToolBar does not act like other dialog
boxes (none of the ToolsOptions dialog boxes do), you
can’t use it to display and then grab the selected Icon.
Therefore, the list box in this macro displays the number of
the tool (-1 to 104) and a short description.

6) a group box that contains one (if this is a NORMAL document) or
two (if it is a template document) option buttons to determine where to
store the changes: in NORMAL.DOT or in the template.

XE "ChooseDirectory"§ChooseDirectory
(Alt-D for Demo)

ChooseDirectory was written to provide an easily customizable list of
descriptions for documents, directories, and paths. Once configured
properly it will present you with a list box of your most frequently
accessed files and directories.

This version is specific to Word for Windows version 2.0. It has many
enhancements, both in the interface and in the feature set.

Gadfly Toolbox Reference§ · 11

The Dialog Box

When you execute ChooseDirectory you will see the following dialog
box:

Directory/Document

This listbox contains descriptions, which you provide, that point to
either a directory or a document or a path.. When you run
ChooseDirectory for the first time, this list will be blank.

(The word contained in brackets is added automatically by
ChooseDirectory. See below under Edit item description.)

Extensions

This combination box contains a list of extensions to use when you
open a directory. The extension DOC is always a default. If you type
in an alternate extension it will automatically be saved to the list and
available next time you run ChooseDirectory.

(To remove an extension from the list, simply type the extension
prefaced by an minus sign: e.g. -TMP.)

Open dir/doc

Selecting this option button executes a different function depending on
what the currently selected description describes. The description can
“point to” a directory, a single document, or a multiple path.

If it is a single path it will display the FileOpen dialog in that
directory.

If it is a document, it will open that document.

If it is a multiple path specification, it will run FileFind using that
path specification as the SearchList.

New File this dir

Selecting this button simply changes to the directory pointed to by the
description, and then executes FileNew.

Edit item description

Selecting this button will display the following dialog box:

If the path is a directory, [directory] will be added to the
description.

e.g.C:\WINWORD

If the path is a document, [document] will be added to the description.

Gadfly Toolbox Reference§ · 12

e.g C:\WINWORD\JOURNAL.DOC

If the path is a multiple path specification, [search path] will be added to
the description.

e.g.C:\WINWORD;C:\DOCS

If the path points to multiple documents, [multiple docs] will be added to
the description.

e.g.C:\WINWORD\JOURNAL.DOC+C:\DOCS\MY.DOC

Note: if the path specification points to multiple documents, then each of
the documents will be opened.

There is a new facility on the Edit Item Description and Add Item
Description dialog box. There is a button beneath the path edit box
named “Select Path/File”. Selecting this button will present you with
the standard FileOpen dialog box. You can move around your hard
disk, find the document you which to open.

To have ChooseDirectory work on just the path selected, be sure to
remove the file name that is inserted (and the final backslash)

To do multiple paths remember to add a semi-colon between paths.
To do multiple documents remember to add a plus sign between file names.Add item description

Selecting this option does the same thing as Edit item description
except instead of editing the currently selecting description/path, it
adds a new description/path combination.

Delete current item

Selecting this option simply removes the currently selected
description/path from the list. Note: there is no confirmation.

How it works
The macro uses a series of keywords in your WIN.INI file under [MS
Word ChooseDirectory] to store alternate extensions, and path
descriptions/specifications.

The alternate extensions are stored as follows:

xExt=*,TXT,XWS,DOT

When first run, this line will not exist. ChooseDirectory will prompt
you for input. Note that the extensions are just that: no preceding
period. Also note that the default extension (DOC) should not be
entered in this line (though doing so won’t harm anything).

The description/directories are stored in lines such as:

Dir0=Main Directory [directory|C:\WINDOWS\WINWORD

Dir1=My journal [document]|C:\WORD\JOURNAL.DOC

Gadfly Toolbox Reference§ · 13

Dir2=Macro files [search path]|C:\WIN\WORD\MACROS

DirN

These lines are added as needed.

Installation Tips
To have ChooseDirectory run every time you start Word for
Windows, simply either add the following line to your current
AutoExec macro (create one if none exists):

ToolsMacro “ChooseDirectory”, .Run

It is also recommended that you assign ChooseDirectory to both a
menu and a key combination.

Converting from Earlier versions of ChooseDirectory.
Versions of ChooseDirectory intended for Word for Windows 1.1
used a series of keywords stored in the WIN.INI file under the heading
[Microsoft Word]. Word for Windows 2.0 has a new heading,
[Microsoft Word 2.0].

ChooseDirectory 2/x.x uses it’s own heading: [MS Word
ChooseDirectory]

If you want to start with the same directory, extension specifications
with this version of ChooseDirectory as you had used with earlier, do
the following:

Open Notepad.exe

Load WIN.INI

Search for the phrase [Microsoft Word].

Under that heading there should be the following Keywords:

dNum, xExt, and Dir0...DirN

Select all of those lines and move it to the heading [MS Word
ChooseDirectory] (which already exists if you have run
ChooseDirectory 2/1.02 even once.

Advanced
Specifying an extension

You can add a specific extension to a path.

For instance, if the description “My templates” pointed to a path in the
following form:

C:\WINWORD\DOT*.DOT

Gadfly Toolbox Reference§ · 14

Then upon execution this would run FileOpen on the C:\WINWORD\
DOT directory, with *.DOT as the filter.

Note: the bracketed “type” description generated by
ChooseDirectory will still read [document].

Similarly, you can add an extension to the items in a multiple path, as
follows:

c:\wfw*.doc;c:\dot*.dot

Upon execution, FileFind will be run with this as the SearchPath.
Note: the bracketed “type” description generated by ChooseDirectory
will still read [search path].

Deleting an extension from the list

When you specify and extension, it is added to the list. To remove an
extension from the list, run ChooseDirectory and type in the
extension you wish to remove prefaced by a minus sign: e.g. . -TMP.

Sorting the extension list

Extensions will be displayed in the list in the following order: DOC
will always come first; the remaining extensions will display in the
order you entered them.

To re-arrange the alternative extensions you must edit the line xExt
found in WIN.INI under the keyword [MS Word ChooseDirectory].

If can edit any of the [MS Word ChooseDirectory] items by using
ToolsOptions and specifying MS Word ChooseDirectory as the
application.

Warning:
The WIN.INI lines that contain the description/path specification must
contain text on either side of the vertical bar (otherwise an error will
be generated). This version of ChooseDirectory contains error
checking to make it very difficult to incorrectly install these lines,
however, nothing is fool proof... If you get an error when first
running the macro, please check you WIN.INI (using NOTEPAD or
SYSEDIT) and examine the section following [Microsoft Word].
Note: You can now also edit a specific section of WIN.INI in the
ToolsOptionsWININI dialog box from within Word for Windows.

If you see a line such as the following —

Dir0=!c:\winword

Dir1=Main Directory|

-then you know there is a problem. Add the missing information (in
the first case, a description, in the second case a path specification).

Gadfly Toolbox Reference§ · 15

XE "ControlRun"§ControlRun
(Alt-Shift-U for Demo)

This macro is an adaptation of a macro posted by Doug Timpe for
WfW 1.1. The only major change is the use of PushButtons instead of
CheckBoxes.

It replaces completely the built in command named ControlRun. The
advantage of this macro over the built in macro/command is that you
can modify this macro to include frequently used program, and it has a
text edit box into which you can enter any legal command.

ControlRun: dialog box:
By default the dialog box consists of a text edit box and four buttons.

You can enter any legal command into the edit box.

The PushButtons are

Clipboard

Control panel

Dialog editor

Cancel

You could modify this macro to include other frequently run
programs.

XE "CopyMacroActive"§CopyMacroActive
In my own work with macro development, this has proven one of the
most useful tools in my NORMAL.DOT.

This macro will build a list of all the macros in the current context —
either the global macros or the macros in the reigning template — and
then build a second list of all the other templates that are currently
loaded into Word for Windows, and allow you to choose a macro to
copy and a destination template.

For example, if you are working on a letter in LETTER.DOT, and you
have a document based on MEMO.DOT also loaded, running this
macro will display a list of LETTER.DOT’s macros and allow you to
copy any or all of them into MEMO.DOT with a single click.

You can also encrypt the macro en route.

Gadfly Toolbox Reference§ · 16

CopyMacroActive: dialog box
The dialog box consistes of two list boxes, two buttons, and one
checkbox.

Macros in (templatename)

This list displays all of the macros in the active template at the time of
executing CopyMacroActive.

Copy macro(s) to:

This second list box will display the possible destination templates (it
gathers them by cycling through all open document windows and
determining the rulling template. Therefore if there is only one
document open the macro will exit).

Copy Selected

This button copies only the currently selected macro (and then moves
the selection to the next macro in the list).

Copy All

This button will copy all the macros in the list to the selected
destination template.

Encrypt

This check box, if active, will encrypt the macro during the copy
process.

XE "CreateOutlineDoc"§CreateOutlineDoc
This macro allows you to save only the heading text from a document
to a second “outline” document.

Why? When you collapse a Word for Windows document into Outline
View and then select the outline, you are actually selecting all the text
and levels beneath the visible outline. If you were to cut and paste to a
second, blank document you would be copying everything.

This macro allows you to create a document that reflects only the
outline organization of its source document.

CreateOutlineDoc: dialog box
Outline Document Name

This is the name used to save the newly created outline document. By
default the name will be the file name portion of the document being
converted with the document extension OTL appended.

By default the OTL file will be saved in the same directory as the
source document.

Gadfly Toolbox Reference§ · 17

If you wish to change either of these defaults, type the filename
desired, or the full path desired, in the edit box.

Outline Document Template

By default the new document will be based on the same template as
the source document. If the source document is a template itself, then
the destination document will be based on NORMAL.DOT.

If you have a standard outline template, you can enter it into the macro
as the default. For example, if you have a template named
OUTLINE.DOT used for all outlines, simply locate and change the
line

dlg.Template = Template$

to

dlg.Template = “OUTLINE”

Keep Footnotes

Keep Annotations

Simply check the appropriate box to include footnotes and/or
annotations in the new document.

Be aware that the footnotes numbering will not be the same as the
numbering in the original document since the footnotes that are in the
text are ignored.

Also, be aware that footnotes that do not have automatic numbering
will be ignored.

Expand to level

You can specify how many levels of the outline you wish to preserve
during the copy process.

XE "DeleteIdleStyles"§DeleteIdleStyles
This macro is useful if you have overloaded a document with unused
(and sometimes unknown...) styles.

This can happen when you convert from another word processor to
Word for Windows, or when you combine documents from several
different sources, or when you merge styles from another document or
template (but don’t want all the styles to remain in the current
document).

Unfortunately, there is a limitation. There are several (thirty odd, I
think) built in style names:

· annotation reference,annotation text,footer,footnote
reference,footnote “ + “text,header,heading 1,heading

Gadfly Toolbox Reference§ · 18

2,heading 3,heading 4,heading 5,heading 6,heading
7,”heading 8,heading 9,index 1,index 2,index 3,index
4,index 5,index 6,index 7,index heading,”line
number,Normal,Normal Indent,toc 1,toc 2,toc 3,toc 4,toc
5,toc 6,toc 7,toc 8,EnvelopeAddress,EnvelopeReturn

Often you will see that a document that starts out with only Normal,
Normal Indent, and Heading 1-3 suddenly has a list containing all of
the above style names.

There is no way to remove these styles from the style list once they
appear. This is a feature in Word for Windows. Write Microsoft...

When you run this macro you will be given an opportunity to cancel.

Be careful not to run this macro unless you are sure that all the style
names you wish to retain are actually in use in the document.

Another Note:

There is no reason (that I can think of) that you couldn’t remove user
styles from a template by following these steps:

· Load the DOT file directly.

· Examine the user styles in the template

· Apply those you wish to keep to separate paragraphs

· Run the macro

EncryptMacros
This macro will display a list of macros in the currently active
template and either encrypt all the macros, or allow you to specify
which of the macros to encrypt

WARNING: once a macro is encrypted, it cannot be unencrypted.
BE SURE TO HAVE AN UNENCRYPTED VERSION OF ANY
MACRO YOU ARE DEVELOPING BEFORE ENCRYPTING IT.

See “EncryptTemplate”

EncryptTemplate
This macro will ask you to choose a template, and then will encrypt
every macro in that template.

Note: it does not pause for confirmation. When you load a template
the macros contained in that template are encrypted. The macro does
not, however, automatically save the newly encrypted template. So
you do have the opportunity to discard the changes.

WARNING: once a macro is encrypted, it cannot be unencrypted.

Gadfly Toolbox Reference§ · 19

BE SURE TO HAVE AN UNENCRYPTED VERSION OF ANY
MACRO YOU ARE DEVELOPING BEFORE ENCRYPTING IT.

See “EncryptMacros”

FiddleNotesXE "FiddleNotes"§
This is a simple macro that has four options:

· Change all footnotes to annotations

· Change all annotations to footnotes

· Delete all footnotes

· Delete all annotations

There is only one caveat: Footnote References and Annotation
References must all have the same style. A buglet in Word for
Windows allows for styles in such references to get out of kilter (since
changing a reference style does not apply retro-actively).

Another macro in this package addresses this problem.

See “ReInsertFootnotes” on page 22

FileTemplateXE "FileTemplate"§
Problem: automatically merging styles

Templates are the repository of several useful aspects of Word for
Windows. If you aren’t comfortable with the idea of a Template or the
concept of Context, I strongly suggest you stare at the manual until it’s
clear.

Templates hold Macros, IconBar assignments, Key Assignments,
Menu Assignments, Glossaries, and Styles.

When you attach a template, or change the attached template, using
the new FileTemplate command (used to be
FormatDocument.Template...) you essentially change which of these
assignments will now have sway over your document. That is, with
the exception of styles.

Changing a template does not automatically change the style
definitions in the current document.

The reason for this is that there are two separate lists of styles — those
contained in the Template (where you probably defined the style) and
those contained in the document itself.

The included replacement for FileTemplate asks if you wish to
change the current documents styles to match those contained in the
template just selected for attaching...

Gadfly Toolbox Reference§ · 20

Here’s the dialog box.

Answering Yes to this prompt would perform the exact equivalent of
selecting FormatStyle, Define, Merge, selecting the same template as
that chosen in the FileTemplate dialog box, and selecting To.

For those of you who know the macro language, the short hand for
this would be:

FormatStyle .FileName = Template$, .Merge, .Source = 1

Answering Yes, therefore, would replace any styles in the document
with styles in the template of the same name. That is, Normal in the
document would now look like Normal from the template. Styles that
don’t already exist in the document will be added.

See also “SyncStyles” on page 27

MacroKeyXE "MacroKey"§
(Ctrl-Shift-K for demo)

Overview:

Allows simple assignment and removal of key stroke combinations to
macros (either global or template bound).

Enhancements over the built in MacroAssignToKey:

Allows the use of Alt-Char, Alt-Ctrl-Char, and Alt-Shift-Char. In the
built in routine the first two combinations are disallowed. The last is
reserved for Word for Windows’s use. Note that Word for Windows
reserves these key sequences for it’s own use in many cases, so
preventing you from reassigning them is a form of protection. Use
this routine cautiously, and backup all DOT files before you
experiment.

Usage:

Main dialog box

You will be presented with a dialog which looks like this:

The line above the list of macros will display the current template or
document/template containing the macros.

By default MacroKey displays the template macros (if there are any).

Macros

A Listbox of macros from the currently selected context. Select the

Gadfly Toolbox Reference§ · 21

macro you wish to assign a key to (or remove a key from).

Key Combination

Check the shift keys you wish to activate (Alt, Ctrl, Shift, in any
combination), and then move to the Key list box and select the
alphanumeric key you wish to assign to the selected macro.

Buttons

Show Global

Displayed only if the current context is a template (and therefore
Global macros are not visible) Selecting this button changes the list to
display the macros from Normal.dot.

Show Template

This button is Displayed only if there is a template attached to the
current document.

Show Commands

Selecting this button will display all of the built in command macros.
Note, building a list of all macros — user and internal — take s fairly
long time.

Manage Keys

This button will run a second macro (assuming it is installed) named
ManageKeys. This macro will display a listbox of the current key
assignments, and, optionally, allow you to create a document
containing a table of those key assignments.

See “ManageKeys” on page 20

Special Keys

choosing this button will display a dialog box of all supported special
keys (Esc through Del...F1 ...F12). Try it, you’ll like it. Look:

Remove

this option checks to see if the currently selected macro has a keycode
assigned to it. If so you are asked if you want to remove it. If not, a
message displays at the bottom of the screen.

CheckBoxes

Show Current

This check box will rebuild the list of macros, displaying the current
key assignment (if any). This takes a significant amount of time. This
function only shows key assignments made by the user, not key
assignments that are internal to Word for Windows.

Gadfly Toolbox Reference§ · 22

Limitations:
MacroKey will warn you if you are about to use a key combination
that is already assigned to a macro. However, it will only warn you if
the key combination in question is NOT one of the default
assignments. That is, it must be an assignments you have made, rather
than one that Word for Windows assumes is the case.

Similarly, it does not warn you if you are about to use a key
combination that is assigned to a style.

Illegal keys

It seems that any combination of keystroke with F1 will always call
help. So it isn’t fair game.

It seems that NumPad 5 (the numpad 5 that is activated by turning
NumLock ON) does not accept shift characters. The NumPad 5 that is
active in default state (NumLock OFF) does accept shift characters.
The macro accounts for this oddity. Also note that the Unshifted
NumLockOFF-5 cannot be assigned to a macro (this is the key, by the
way, that is described as KeyCode 12 in the Technical Reference).

The direction keys, listed on the Special Keys dialog box, have some
limitations.

No direction keys (Home, End, PgUp, PgDn, Right, Left, Down, Up)
can be assigned to a macro.

No direction key plus Ctrl can be assigned to a macro.

No direction key plus Ctrl+Shift can be assigned to a macro.

The Alt key plus Up and Down are legal. The Alt key plus Left and
Right are not legal.

MacroKey will not allow you to assign anything to Ctrl-Alt-Del
(duh...)

Sorting

No sorting of the macros. The template macros will appear in the
order you created them. The built in macros (if that option is checked)
will appear in the order God created them.

Focus

MacroKey works best on a document, not on a template. That is, if
you are editing a template directly there may be trouble. Base a blank
document on the template and try again.

MakeBookXE "MakeBook"§
(alt-ctrl-b for demo)

Gadfly Toolbox Reference§ · 23

A slightly more complicated version of MakeWordBook, this macro
takes the current selection and presents it for editing.

Instead of grabbing the current word if there is not selection it grabs
the current line.

It presents the multi-word selection as a proposed bookmark, with
spaces converted to underline marks

It also checks for illegal characters (punctuation marks and the like)
and replaces them with underscores.

See “MakeWordBook”

MakeWordBookXE "MakeWordBook"§
(alt-ctrl-M for demo)

This macro will first check to see if there is a block of text selected. If
so, that selection will be inserted as a glossary name.

If there is no selected text (just an insertion point cursor), then this
macro will take the current word and make it a glossary name.

This macro will check for duplicate glossary names and append the
instance count to the word if there is already a glossary using the word
as the mark. It does not, however check for illegal punctuation marks
in the current selection.

See “MakeBook”

ManageKeysXE "ManageKeys"§
This macro will display the current key assignments for the active
context. If you are currently working on a document based on
NORMAL.DOT, it will display the “global” key assignments. If you
are working on a document based on LETTER.DOT, it will display
the key assingments specific to the template LETTER.DOT.

The dialog box look like:

The List Box

The list box displays three pieces of information:

The macro that has a key assignment

The mnemonic for the key combination

The keycode for the key combination

For instance, in the above list, the macro NextWindow is assigned to

Gadfly Toolbox Reference§ · 24

Ctrl+Tab, which is keycode 265.

Buttons:

Create Key List

This button will create a new document (based on NORMAL.DOT)
and generate a table containing all of the key assignments.

Delete Selected

This button will remove the currently selected key assignment.

Note: It is possible for key assignments to appear in a template with
not macro (apparently) associated with that key combination. If you
see a line in the above list box that begins with a colon (and no macro
name) you can pretty safely assume that somehow a bogus key
assignment did not get nuked properly at some point. I’d delete it
using ManageKeys.

ManageMacrosXE "ManageMacros"§
This is the orginal “copy macro” macro for Word for Widnows 2.0. A
slightly different version exists in the Using WordBASIC companion
disk.

It differs from CopyMacroActive in that you can specify both the
source and destination templates (neither has to be currently open).

The dialog box looks like:

Souce Template

A list box of all the templates in your DOT-PATH.

Destination Template

The same list of templates

You must specify both a source and a destination template.

You can type a template name directly into the edit portion of the
ComboBox.

The buttons available (after selecting the templates) are:

Copy All

This button will open the working templates and copy all source
macros to the destination in one pass.

Confirm Each

This button will begin the process of copying all macros from source
to destination but will pause at each macro for confirmation.

Gadfly Toolbox Reference§ · 25

List Macros

This macro will display a list box of macros in the source template.

Copy

This button is only relevant if you have entered a macro into the
editbox to the right. This is useful if you wish to copy only one macro
and you know the macro name.

You can also, optionally, encrypt the macro en route from source to
destination.

Limitation

The templates do not display in the list in alphabetical order. The
more templates you have, the slower the macro is to load.

In order for the templates to display sorted alphabetically, you must
physically sort them on your hard disk with a utilitiy such as Norton’s
DiskSort.

See also “XE "CopyMacroActive"§CopyMacroActive” on page 15

OpenMRUListXE "OpenMRUList"§
A simple macro that simply opens all the documents found under the
File menu (the Most Recently Used List).

I would be useful as a startup command from Program Manager:

C:\WINWORD\WINWORD.EXE /mOpenMRUList

—would start Word for Windows and open the files on the MRU list.

PrintRangeXE "PrintRange"§
PrintRange is a simple macro that fills a major lack in Word for
Windows

Main Dialog Box

Range

Selecting this button will print the comma delimited list of
page numbers entered into the box to its right.

If you select Range then you will not be able to print Odd or
Even pages.

Even Pages

Prints only the even pages in the current document.

Gadfly Toolbox Reference§ · 26

Odd Pages

Prints only the odd pages in the current document.

Reverse Print Order

This check box is useful if you want to do “duplex” printing.
Simple check this box, print all Even pages, then place the
stack of pages back into the printer tray and print Odd
Pages.

Goto Standard FilePrint

As a convenience, PrintRange allows you to call the standard
FilePrint macro.

Printer Setup

Runs the standard Printer Setup macro to allow you to change
the currently active printer.

Limitation:

At this time PrintRange is an either or proposition. That is, if you
specify a Range you cannot also specify Odd or Even.

That may come in the next version.

ReInsertFootnotesXE "ReInsertFootnotes"§
Note on Footnotes:

If you change the character style definition of a footnote or an
annotation reference) instances of footnote reference inserted prior to
he re-definition will not change. Subsequent footnote insertions will
have the new attributes.

For example, if you begin inserting footnotes with the character
definition of Red and Hidden, then change it to Blue and non-hidden,
the already inserted footnotes will not change to the new style.

Another manifestation of this problem arises if you select a paragraph
that has a footnote in it, and press Ctrl-SpaceBar to reset the character
formatting.

The included macro, ResetFootAnnote does not, like the other gFixes,
replace a built in command. It is a new command which you can
execute in order to reinsert a footnote or an annotation.

How it works

There are two modes of operation:

If the insertion point is currently positioned on a footnote reference or
an annotation mark the macro will re-insert that footnote or annotation
only and then stop.

Gadfly Toolbox Reference§ · 27

If the insertion point is not on a footnote reference or an annotation
mark, it will prompt you for which to re-insert document wide with a
dialog box:

See also “FiddleNotes” on page 18

SyncStylesXE "SyncStyles"§
This simple macro does the equivalent of FormatStyle.Option.Merge.
It is useful if you want to make sure that the styles in a document are
always also stored in the template; or if you want to reset the styles
contained in the current document to the styles as they are defined in
the template.

See also “FileTemplate” on page 18

SyncStyles: dialog box:
Copy TO

If you select “Copy Document style TO template”, you will, in
essence, be merging the styles contained in the document to the
current document template.

1. If a style exists in both the template and the document, the
template definition is changed to match the current
definition as it exists in the template.

2. If a style does not exist in the template, but does exist in
the document, it is added to the style list of the template
(that is, future documents based on that template will now
have the additional styles...).

Copy FROM

If you select “Copy FROM Template styles into the current
document”, you will be merging all of the styles contained in the
template into the current docuement.

The effect of these actions is two fold:

1. If a style exists in both the template and the document, that
style is changed to match the template.

2. If a style does not exist in the document, but does exist in
the template, it is added to the style list.

ToggleHiddenXE "ToggleHidden"§
(Ctrl-Shift-H for demo)

Gadfly Toolbox Reference§ · 28

Toggle View Hidden — without going through the ToolsOptionsView
dialogue box. I suggest assigning this to Ctrl-Shif-H.

ToggleOutlineXE "ToggleOutline"§
(Ctrl-Shift-O for demo)

Toggles in and out of outline mode.

TogglePicturesXE "TogglePictures"§
Toggles the display of pictures and picture placeholders.

Word for Windows will scroll faster through a complex document if
pictures are not displayed.

ToggleRevisionXE "ToggleRevision"§
Toggle revision marks on and off.

ToggleStyleBarXE "ToggleStyleBar"§
Toggles the style bar on and off.

ToggleViewToolsXE "ToggleViewTools"§
(ctrl-shift-v for demo)

There are seven “tools” that can be displayed on the Word for
Windows screen:

· ToolBar

· Ribbon

· Ruler

· Status

· Vertical Scrollbar

· Horizontal Scrollbar

· Style Bar

The first three are controlled under the View menu. The last four are
controlled under the ToolsOptionsView dialog box.

This macro present a single, simple dialog box of seven checkboxes.
It has three buttons (not counting Cancel...):

On

Gadfly Toolbox Reference§ · 29

Off

All On

Setting tolerance for toggle
There is a line in the macro that determines how many options need to
be set to on before the macro will assume you want the default action
to be OFF.

That is, if three options are currently on, then make the default action
for the push buttons to be Off.

If less than three are on, leave the default as On.

The line of code looks like:
If Total >= 3 Then St = 2 Else St = 1

Setting default minimum for on:
If you examine the macro you will see that there is also a section you
can customize to specify which group of options should be forced to
on if everything is already off...

That code looks like:
If Total = 0 Then b = - 1 : vt = - 1 : v = - 1

ToggleWindowXE "ToggleWindow"§
Toggle the currently active document window split/zoomed.

WindowStackXE "WindowStack"§
Simply stacks the current document windows, leaving the title bars
visible. There are two constants in the macro, HLap and VLap, which
can be adjusted if the overlap does not suit your preferences.

The macro is not device dependent. It should work at all monitor
resolutions.

WinSideBySideXE "WinSideBySide"§
(Ctrl-Shift-B for a demo)

Arranges the document Windows side by side. If there are more than
two active windows you are prompted for which window to arrange
next to the currently active document.

Gadfly Toolbox Reference§ · 30

gLibXE "gLib" \r "TheEnd"§

gLib§ · 31

Overview
When you open GTOOLBOX.DOC you will automatically install
the library of routines found in a macro called GLIB. This macro will
be automatically copied to your NORMAL.DOT.

The reason for this is two fold:

1) Word for Windows version 2.0 allows one to call sub
routines and functions contained in another macro. By
placing several commonly used subroutines in one place,
the other macros are smaller.

2) The subroutines and functions found in GLIB can be used
by your own macros. In essence, it adds many new macro
functions to WordBasic.

In order to use these functions in your own macros you simply
must 1) make sure gLib is installed in your Normal.dot and
2) call the function prefaced by the library name:
gLib.FunctionName.

Warning

If you modify any of the routines in the gLib library, be sure the
increment the version number.

Subsequent installations of gToolBox (this version or a newer version)
will check to see what the version number of the library is. If it is the
same as the library to be installed nothing is coped.

If it is less than or gerater than the library to be installed the current
library will be copied to another macro named gLibBAK.

Main dialog box
If you run gLib itself, you will see a listing of the subroutines and
functions it contains:

gLib Reference

ActivatePartial(Doc$)
This subroutine can be used to supplement the built in command
Activate WindowName$. The difference between the two is that this
procedure only requires a partial name, whereas the built in command
requires that you know precisely what’s up there on the document bar.

gLib§ · 32

e.g.

ActivatePartial(“GTOOL”)

Will cycle through each open window and stop at the first one whose
title contains the letters “gtool” (not case-sensitive).

CheckLib
This function returns the version number of gLib.

If glib.CheckLib Then Print “Okay”

Chew$(Source$,Marker$)
A string function that returns the left portion of a string up to the
occurence of the marker.

The source string is truncated. So, for instance:
S$ = “one|two|three|four”
m$ = “|”
For x = 1 to 4

MsgBox glib.Chew$(s$,m$)
Next x

—would display four mesage boxes, containing one, two, three and
four, in sequence.

CountChar(Source$, Char$)
A function that returns the number of occurences in a string of

a specific character:

x = gLib.CountChar(“one,two,three”,”,”)

—would return 2.

fExist(FullPathName$)
This function returns -1 if the specified file was found; 0 if not.

fFileCount(FileSpec$)
This function counts the number of files in a directory:

DotCount = gLib.fFileCount(“c:\winword*.dot”)

fFileName$(b$)
This function returns the filename portion of a full path name.

Name$ = gLib.fFileName$(“c:\winword\normal.dot”)

would return “normal”.

gLib§ · 33

fFileNameExt$(b$)
Returns the filename plus extension from a full path designation.

Name$ = gLib.fFileNameExt$(“c:\winword\normal.dot”)

would return “normal.dot”.

fStr$(Num)
Returns a formatted string from an integer, stripping the padding
Word places in front of a digit.

GetDocDir$
Returns the directory in which a document is stored.

If this function is called from within a macro pane it returns a null
string.

GetFile(FullName$,Dir$,Default$)
Displays the FileOpen dialog box.

GetPath$(Source$)
Strips out a path from a full file/path specification

GetTemplate$
Returns the current document’s template

gLibInstalled(Macro$)
This function is unique in the package. It should be used, not from
within the gLib macro, but should be copied into any macro that calls
a gLib routine.

What it does is use the same logic as MacroExist to determine if there
is, in fact, a macro named gLib in the current Normal.dot.

This allows you to test at the top of a macro that requires gLib if the
library is installed. It displays a warning message and request for re-
installation.

If you look at almost any of the more complicated macros in
gToolBox you will see an example of how this is used.

gMsg(Msg$,Title$)
Displays a message with an attention sign.

gLib§ · 34

gQuery(Msg$,Title$)
Displays a query dialog box.

HasKey(Macro$,Context)
Returns whether or not a macro in the given context has a key
assignment.

Inject$(Source$, New$, Place)
A string function to insert a string within a string at a given place.

Name$ = gLib.Inject$(Name$(“Guy Gallo”, “J. “,4)

—would return “Guy J. Gallo”

IsMacroPane([MacroName$])
Returns -1 if the focus is currently on a macro editing window

MacroName$ is an optional parameter containing the name of the
macro calling the function. This is so that the warning message will
be smart and tell you the name of the macro causing trouble...

KeyDescription$(KeyCode)
This function returns a string mnemonic for the specified KeyCode.

lHelp(HelpFileName$)
Loads the specified HLP file.

glib.lHelp(“gtools.hlp”)

—would load the windows help engine and attempt to load the file
GTOOLS.HLP.

(Both this and the following sub routine were adapted (very slightly)
from a routine by Julianne Sharer of WexTech Systems.)

lcHelp(ContextNumber,HelpFileName$)
Loads the specified HLP file with a context number.

glib.lHelp(2,”gtools.hlp”)

—would load the windows help engine and attempt to load the file
GTOOLS.HLP and moves to the help page specifed by the context
number 2.

gLib§ · 35

ListMacros$(Context,All)
A simple fuction that displays a list of macros and returns the selected
macro or a null string (if cancelled)

It will displays a list box of all macros in the specfied context (0 for
global and 1 for the current template).

If All is 0 then only user macros will be displayed. If All is 1 then the
built in commands will also be displayed.

Limitation: this routine does not sort the list of user macros. User
macros are displayed in the order they were created.

The built in commands, for who knows what reason, are also not
sorted alphabetically...

A sort routine (found in WOPR) could be added, but it would
significantly slow things down.

LoopMsg(Message$)
This is an extremely useful function, to be used while writing macros.
It’s purpose is to display the value of any number of variables during
the execution of a loop.

For example:
Loop = -1 ’set the boolean variable Loop to true
For x = 64 to 255

StringVar$ = StringVar$+ StringVar$ + Chr$(x)
Index = x
If Loop Then Loop = glib.LoopMsg(“Index: “ +Str$(x) + “; String: “+ StringVar$)

Next X

When the function displays the variables, you have two choices, OK
and Quit the loop.

If you quit the loop the variable Loop is set to false, the loop continues
on it’s way without displaying a message...

MacroExist(Macro$)
Returns True or False (-1/0) if a macro exists.

Takes a string argument in the same form as IsExecuteOnly.

MacroExist([TemplateName:]MacroName)

e.g. MacroExist(“NORMAL.DOT:GLIB”)

If the template name is omitted the macro will look in the current
document’s template first and then in the global context.

NoSlash(Source$)
This function checks to see if the last character in a string is a

gLib§ · 36

backslash and if so, strips it off. This is useful for properly formatting
a path specification for ChDir.

NukeTopMenu
Dangerous. Will rename all of the top menus to a space character.

To be used in conjuntion with ResetTopMenus and the internal
command RenameMenu.

Replace$(Source$, Old$, New$)
This function replaces every occurence in a string of one string with
another string.

N$ = glib.Replace(“h*e*l*l*o”,”*”,”_”)

—would return the string “h_e_l_l_o”

ResetTopMenu
Resets the top menus to the default names. Used by a macro that calls
NukeTopMenu.

Reverse$(Source$, Marker$)
This function rearranges a string along a given character or group of
characters. This is useful, in combination with Replace$() when you
want to change LastName,FirstName into Firstname LastName. For
example:
Name$ = “Gallo,Guy”
Name$ = gLib.Reverse$(Name$,”,”)
Name$ = gLib.Replace$(Name$,”,”,Chr$(32))

After these three lines the variable Name$ would hold the string “Guy
Gallo”.

SameFormat
Returns true if every character in the selection has the identical
character attributes.

If any character in the selection has a different character attribute it
returns false.

SelectSameFormatRight
Extends the selection until encountering a different character format
from the starting point.

This is used by ReInsertNotes.

gLib§ · 37

This subroutine calls another function in gLib, named SameFormat
Sub SelectSameFormatRight ’Extends the selection until some part of the character

’formatting changes
CharRight 1, 1
While SameFormat

CharRight 1, 1
Wend
CharLeft 1, 1
End Sub

A corresponding SelectSameFormatLeft could easily be
implemented as well.

Split(Source$, Marker$, First$, Second$)
This is a subroutine that will take a string and divde it in two at a
specific point.

For example, if Source$ = “Guy+Gallo”, the command

gLib.Split(Source$,”+”,First$,Second$)

would return store “Guy” in the variable First$, and “Gallo” in the
variable Second$.

Trim$(Source$, ZapChar$)
This function strips a character from both sides of a string. So, for
instance:

Pad$ = “****Test****”

Unpad$ = gLib.Trim$(Pad$,”*”)

—would return, in the variable Unpad$, the string “Test”

Wait(Seconds)
Not astronomically accurate... I think it’s dependent on CPU speed...
but still useful in debugging and testing macros...

gLib§ · 38

Glossary of Terms

Gadfly (WinWord Gadfly Team)
Back in the early days of Word for Windows there was a forum on CompuServe where the
pioneers gathered. A handful of the programmers and testers from Microsoft joined
conversations and answered questions and fielded attacks and complaints. They signed their
messages “WinWord Development Team”. I took to signing mine “WinWord Gadfly
Team.”

Global
Global refers to macros and customizations stored in NORMAL.DOT.

Template
A template is used to store document class specific customizations, such as menu and key
assignments specific to creating a letter or a memo.

Page - 39

4/6/1992 02:48:00 PM

Gadfly Macros Registration -
Guy Gallo
219 East 69th Street
New York, NY 10021

 NAME: COMPANY: STREET: CITY: STATE, ZIP:
PHONE: Electronic address:

Registration Only: ($39.95 each)
Disk [] 3.5 [] 5.25 ($5.00 Additional)
Upgrade previous registration ($10.00)
NYS Sales Tax (if appropriate)
Total enclosed:

Where did you get ? COMMENTS:

 is copyright 1992, by Guy J. Gallo. No portion of this document or the macros it contains may be
modified, copied, distributed or otherwise altered without the express written permission of the author.
This includes, but is not limited to, distributing the package for a fee, or distributing personal
modifications to the included macros.

Index

ChangeQuoteDash, 5
ChangeTool, 7
ChooseDirectory, 8
ControlRun, 13
CopyMacroActive, 13, 23
Copyright, 3
CreateOutlineDoc, 14
DeleteIdleStyles, 15
Encryption, 3
FiddleNotes, 16
FileTemplate, 17
gLib, 35
MacroKey, 18
MakeBook, 20
MakeWordBook, 21
ManageKeys, 21
ManageMacros, 22
OpenMRUList, 23
Price, 4
PrintRange, 23
ReInsertFootnotes, 24
ShareWare, 4
SyncStyles, 25
ToggleHidden, 26
ToggleOutline, 26
TogglePictures, 26
ToggleRevision, 26
ToggleStyleBar, 26
ToggleViewTools, 26
ToggleWindow, 27
ToolBar, 7
Updates, 4
Upgrading, 4
WindowStack, 27
WinSideBySide, 28

	Introduction
	What is it?
	This collection of macros began humbly enough during the initial release of Word for Windows as a group of useful toggle macros, a couple of window arrangement macros, and an envelope printing macro.
	Many, if not most, of those macros came about either because I wanted them for my own use, or because someone on the Word for Windows forum of CompuServe suggested thus and such could not be done (and I took the bait). Many came about as a direct result of conversations with James Gleick, Barry Simon, and Robert Enns (the original other WinWord Gadfly Team members). I’d like, again, to thank them and all the other members of that remarkable forum, for their help and suggestions.
	As the macros accumulated, and they became more and more complicated—both in terms of their functionality, and in terms of their “error handling”—these macros graduated from hobby to product. With the gathering of the orginal GJGMAx.ZIP files into GTOOLS.ZIP (and the addition of several new macros), they became the first ShareWare incarnation of my work.
	Some new macros were kept separate, either because of functional specificity (like the printer related macros or the Current DDE macro GetAddress) or because they were so much larger and more “standa-alone-ish” than the others (like ChooseDirectory or MacroKey). This resulted in a bit of confusion.
	With this release of what was GTOOLS, with a new name—GTOOLBOX—I am gathering the vast majority of my Word for Windows macros into a single package. And requesting a single registration price for all.

	EncryptionXE "Encryption"§ and CopyrightXE "Copyright"§
	The macros in this package are not encrypted. This means you can easily modify their functionality to suite your particular preferences. And, if so inclined, you can learn quite a lot about WordBASIC by studying these macros.However, distributing any modified versions of these macros, in any manner, is strictly prohibited.
	If you are interested in a site license, or a license to distribute modified/customized versions of these macros to your clients, please contact the author.

	XE "Price"§Pricing
	New registrations
	Registration Only $39.95
	Registration and Disk $39.95 + $5.00 shipping
	XE "Upgrading"§Upgrades from previous versions
	There is no charge for registering GTOOLBOX if you have registered any two (or more) of the previously released packets:
	GTOOLS2 (Gtools), GPROE (PrintRange), GCDIR (ChooseDirectory) or GMKEY (MacroKey)
	If you have registered any one of the above packets, the upgrade to gToolBox is $10.00
	XE "Updates"§Incremental updates
	There may be incremental releases—to fix any bugs found in this release, to tweak performance, to add additional macros—between now and the next major release of Word for Windows. These “updates” will be free to all registered users.

	XE "ShareWare"§ShareWare
	This product is being distributed as ShareWare. This means you are under no obligation to pay for the product unless you continue to use it.
	But if you do use (and learn from) these macros, please register. A great deal of effort went into their construction. Your registration will support the continuation of the Gadfly Macros series...
	You are encouraged to distribute the package, as is, to other Word for Windows users.

	Gadfly Toolbox Reference
	XE "ChangeQuoteDash"§ChangeQuoteDash
	Purpose
	(Alt-Shift-Q for Demo)

	"We're at the 'mercy' of our computers!" he said with chagrin.
	The contraction apostrophe and the single quotation marks around ‘mercy’ are the same character.
	Similarly, the opening and closing double quotation marks around the phrase are the same.
	These marks are sometimes called Typewriter quotation marks.
	Well, that’s all you need if you are using a fixed font such as Courier or Prestige Elite. These fonts don’t distinquish between Open and Close Quotation marks, However, proportionally spaced fonts, such as Times Roman, do.
	Compare:

	"This is 'Fixed' type quotation marks."
	“This is ‘Publishing’ type quotation marks.”
	Word for Windows provides a way to insert individuatl Publishing quotation marks with InsertSymbol command..
	There is also a macro in the newmacros.doc called SmartQuotes which allows you to turn Publishing quotation marks on and off. (Note: ther is an improved version of SmartQuotes available on CIS under the named GSMART.ZIP. It’s FreeWare.)
	However, what if you don’t always want Publishing Quotation marks? And what if you started a document without them and now you do want them?
	ChangeQuoteDash is a SmartQuotes post processor.
	A possible way, if you are like me, to use this macro, is before printing—that is, enter text without SmartQuotes installed, and then when you want a typeset style copy with Publishing characters, run this macro. If you don’t save after printing, then the document will remain in typewriter format.
	Conventions:
	EmDash:
	EnDash:
	An ENDash is not interchangeable with all single hyphens. It should be used in cases such as date ranges:

	1990-1992
	—would require an ENDash in Typeset style. Whereas compound words or hyphendation breaks would not.
	For this reason, incidently, the option to change single hyphens to ENDashes requires user intervention. You have to confirm each change.
	Non-breaking hyphens
	For the purposes of this macro, regular hyphens and non-breaking hyphens (entered with Ctrl+Shift+Hyphen) are equivalent. That is, a pair of non-breaking hyphens will be converted to an EMDash, and a single non-breaking Hyphen will be presented as an ENDash candidate. (Entering Non-breaking hyphens is covered on page 90 of the manual).
	NOTE: since double hyphen pairs (Typewriter EMDash) should never be broken at a line end and a hyphen that would convert to an EMDash should never be separated from the two terms it separates, when you convert from Typeset back to Typewriter, the macro will use the non-breaking hyphen, not the normal hyphen.
	Scope: (what it changes...)
	ChangeQuoteDash makes the following assumptions about what you which it to change:

	· If the selection, at the time of invoking the macro, is an insertion point (i.e. a blinking line), ChangeQuoteDash will operate on the entire document.
	· If the selection is a solid block/selection (i.e. you have marked a section of text from the entire document), ChangeQuoteDash will operate only on that selection.
	This is useful in the following scenario: You have a document, such as a manual, the majority of which is proportionally spaced (and therefore Typeset mark qualified). But there is a section of the manual that is formatted in Courier or LinePrinter—this section might be, for instance, a macro listing. In that section you do not want typeset marks. You want normal typewriter marks. Simply select the section of the document to toggle to typewriter and run the macro again.
	ChangeQuoteDash: dialog box:
	This dialog box consists of three option buttons and a check box.
	To typeset (publishing) characters

	This button will change all normal inch/pound, typewriter quotation marks to the curly quotation marks used by typesetters.
	It also automatically converts all hyphen and non-breaking hyphen pairs to an EMDash.
	To Typewriter (normal) characters

	This button will change all typeset type quotation marks back to the normal typewriter type.
	It will also change all EMDashes to a pair of non-breaking hyphens, and all ENDashes to a single non-breaking hyphen.
	Single Hyphen to EnDash

	This option will begin a search and replace for all remaining hyphens and prompt the user if the found hyphen or non-breaking hyphen should be replaced with an ENDASH.
	This last option only converts from hyphens to EnDashes. It should be run AFTER the first option (to typeset) and need not be run at all when converting back to typewriter).
	Save to new file

	If this box is check the macro will perform a FileSaveAs so that you can create a copy of your document before execution.
	XE "ChangeTool"§XE "ToolBar"§ChangeTool
	(Ctrl-Shift-T to demo)
	One of the limitations of the built in ToolsOptionsToolBar command is that if you want to rearrange the icons in either NORMAL.DOT or a template you have to literally remove and replace each one.
	This macro allows you to insert a new tool and move the rest to the right, replace a tool with another, replace a tool with a space, or remove a tool altogether.
	ChangeTool: dialog box:
	The dialog box consists of six parts:
	1) a listbox containing the Current ToolBar
	2) to the right of this are two PushButtons and a checkbox which control the modification to be made; they are:
	CheckBox:

	Shift current tools This checkbox determines what will happen to the existing tools when either of the other modification buttons are selected. With Insert this shifts current tools to the right. With Delete this shifts current tools to the left.
	Buttons:

	Insert new tool - selecting this button will place the new tool at the current location. If Shift current tools is active (checked) the new tool will move existing tools to the right. If Shift current tools is inactive (not-checked) the new tool will replace the currently selected tool.
	Delete selected tool - selecting this button will remove the selected tool. If Shift current tools is active (checked) the existing tools will shift to the left. If Shift current tools is inactive (not-checked) the selected tool will be “deleted” and replaced by a Space.
	3) an Editbox titled Macro for tool

	Type the macro to add to the ToolBar in this editbox. By default the proposed macro is [space].
	4) To the right of this editbox is a group box containing one (if the current context is limited to NORMAL.DOT) or two (if the current document is based on a template and therefore there are two contexts: global and template) buttons.

	Selecting either of these buttons will display a list of the available macros.
	There is also a checkbox Include commands. This checkbox will list the built in Word for Windows commands as well as any user macros.
	Once the list of macros is displayed the selected macro is placed in the edit box.
	Limitation: the list of macros will not appear sorted. User macros are sorted according to their creation. The internal macro/commands are sorted according to some inscrutable whim on the part of the Word Development Team.
	5) a ListBox of available icons.

	Since Word for Windows dialog boxes cannot contain bitmaps, there is no way to actually include the toolbar icons. Since the ToolsOptionsToolBar does not act like other dialog boxes (none of the ToolsOptions dialog boxes do), you can’t use it to display and then grab the selected Icon. Therefore, the list box in this macro displays the number of the tool (-1 to 104) and a short description.
	6) a group box that contains one (if this is a NORMAL document) or two (if it is a template document) option buttons to determine where to store the changes: in NORMAL.DOT or in the template.

	XE "ChooseDirectory"§ChooseDirectory
	(Alt-D for Demo)
	ChooseDirectory was written to provide an easily customizable list of descriptions for documents, directories, and paths. Once configured properly it will present you with a list box of your most frequently accessed files and directories.
	This version is specific to Word for Windows version 2.0. It has many enhancements, both in the interface and in the feature set.
	The Dialog Box
	When you execute ChooseDirectory you will see the following dialog box:
	

	Directory/Document
	This listbox contains descriptions, which you provide, that point to either a directory or a document or a path.. When you run ChooseDirectory for the first time, this list will be blank.
	(The word contained in brackets is added automatically by ChooseDirectory. See below under Edit item description.)
	Extensions
	This combination box contains a list of extensions to use when you open a directory. The extension DOC is always a default. If you type in an alternate extension it will automatically be saved to the list and available next time you run ChooseDirectory.
	(To remove an extension from the list, simply type the extension prefaced by an minus sign: e.g. -TMP.)
	Open dir/doc
	Selecting this option button executes a different function depending on what the currently selected description describes. The description can “point to” a directory, a single document, or a multiple path.
	If it is a single path it will display the FileOpen dialog in that directory.
	If it is a document, it will open that document.
	If it is a multiple path specification, it will run FileFind using that path specification as the SearchList.
	New File this dir
	Selecting this button simply changes to the directory pointed to by the description, and then executes FileNew.
	Edit item description
	Selecting this button will display the following dialog box:
	

	If the path is a directory, [directory] will be added to the description.
	e.g. C:WINWORD
	If the path is a document, [document] will be added to the description.
	e.g C:WINWORDJOURNAL.DOC
	If the path is a multiple path specification, [search path] will be added to the description.
	e.g. C:WINWORD;C:DOCS
	If the path points to multiple documents, [multiple docs] will be added to the description.
	e.g. C:WINWORDJOURNAL.DOC+C:DOCSMY.DOC
	Note: if the path specification points to multiple documents, then each of the documents will be opened.
	There is a new facility on the Edit Item Description and Add Item Description dialog box. There is a button beneath the path edit box named “Select Path/File”. Selecting this button will present you with the standard FileOpen dialog box. You can move around your hard disk, find the document you which to open.
	To have ChooseDirectory work on just the path selected, be sure to remove the file name that is inserted (and the final backslash)
	To do multiple paths remember to add a semi-colon between paths.
	To do multiple documents remember to add a plus sign between file names.Add item description

	Selecting this option does the same thing as Edit item description except instead of editing the currently selecting description/path, it adds a new description/path combination.
	Delete current item
	Selecting this option simply removes the currently selected description/path from the list. Note: there is no confirmation.
	How it works
	The macro uses a series of keywords in your WIN.INI file under [MS Word ChooseDirectory] to store alternate extensions, and path descriptions/specifications.
	The alternate extensions are stored as follows:
	xExt=*,TXT,XWS,DOT
	When first run, this line will not exist. ChooseDirectory will prompt you for input. Note that the extensions are just that: no preceding period. Also note that the default extension (DOC) should not be entered in this line (though doing so won’t harm anything).
	The description/directories are stored in lines such as:

	Dir0=Main Directory [directory|C:WINDOWSWINWORD
	Dir1=My journal [document]|C:WORDJOURNAL.DOC
	Dir2=Macro files [search path]|C:WINWORDMACROS
	DirN
	These lines are added as needed.
	Installation Tips
	To have ChooseDirectory run every time you start Word for Windows, simply either add the following line to your current AutoExec macro (create one if none exists):

	ToolsMacro “ChooseDirectory”, .Run
	It is also recommended that you assign ChooseDirectory to both a menu and a key combination.
	Converting from Earlier versions of ChooseDirectory.
	Versions of ChooseDirectory intended for Word for Windows 1.1 used a series of keywords stored in the WIN.INI file under the heading [Microsoft Word]. Word for Windows 2.0 has a new heading, [Microsoft Word 2.0].
	ChooseDirectory 2/x.x uses it’s own heading: [MS Word ChooseDirectory]
	If you want to start with the same directory, extension specifications with this version of ChooseDirectory as you had used with earlier, do the following:

	Open Notepad.exe
	Load WIN.INI
	Search for the phrase [Microsoft Word].
	Under that heading there should be the following Keywords:
	dNum, xExt, and Dir0...DirN
	Select all of those lines and move it to the heading [MS Word ChooseDirectory] (which already exists if you have run ChooseDirectory 2/1.02 even once.
	Advanced
	Specifying an extension
	You can add a specific extension to a path.
	For instance, if the description “My templates” pointed to a path in the following form:

	C:WINWORDDOT*.DOT
	Then upon execution this would run FileOpen on the C:WINWORDDOT directory, with *.DOT as the filter.
	Note: the bracketed “type” description generated by ChooseDirectory will still read [document].
	Similarly, you can add an extension to the items in a multiple path, as follows:

	c:wfw*.doc;c:dot*.dot
	Upon execution, FileFind will be run with this as the SearchPath. Note: the bracketed “type” description generated by ChooseDirectory will still read [search path].
	Deleting an extension from the list
	When you specify and extension, it is added to the list. To remove an extension from the list, run ChooseDirectory and type in the extension you wish to remove prefaced by a minus sign: e.g. . -TMP.
	Sorting the extension list
	Extensions will be displayed in the list in the following order: DOC will always come first; the remaining extensions will display in the order you entered them.
	To re-arrange the alternative extensions you must edit the line xExt found in WIN.INI under the keyword [MS Word ChooseDirectory].
	If can edit any of the [MS Word ChooseDirectory] items by using ToolsOptions and specifying MS Word ChooseDirectory as the application.
	Warning:
	The WIN.INI lines that contain the description/path specification must contain text on either side of the vertical bar (otherwise an error will be generated). This version of ChooseDirectory contains error checking to make it very difficult to incorrectly install these lines, however, nothing is fool proof... If you get an error when first running the macro, please check you WIN.INI (using NOTEPAD or SYSEDIT) and examine the section following [Microsoft Word]. Note: You can now also edit a specific section of WIN.INI in the ToolsOptionsWININI dialog box from within Word for Windows.
	If you see a line such as the following —
	Dir0=!c:winword
	Dir1=Main Directory|

	-then you know there is a problem. Add the missing information (in the first case, a description, in the second case a path specification).

	XE "ControlRun"§ControlRun
	(Alt-Shift-U for Demo)
	This macro is an adaptation of a macro posted by Doug Timpe for WfW 1.1. The only major change is the use of PushButtons instead of CheckBoxes.
	It replaces completely the built in command named ControlRun. The advantage of this macro over the built in macro/command is that you can modify this macro to include frequently used program, and it has a text edit box into which you can enter any legal command.
	ControlRun: dialog box:
	By default the dialog box consists of a text edit box and four buttons.
	You can enter any legal command into the edit box.
	The PushButtons are

	Clipboard
	Control panel
	Dialog editor
	Cancel
	You could modify this macro to include other frequently run programs.

	XE "CopyMacroActive"§CopyMacroActive
	In my own work with macro development, this has proven one of the most useful tools in my NORMAL.DOT.
	This macro will build a list of all the macros in the current context — either the global macros or the macros in the reigning template — and then build a second list of all the other templates that are currently loaded into Word for Windows, and allow you to choose a macro to copy and a destination template.
	For example, if you are working on a letter in LETTER.DOT, and you have a document based on MEMO.DOT also loaded, running this macro will display a list of LETTER.DOT’s macros and allow you to copy any or all of them into MEMO.DOT with a single click.
	You can also encrypt the macro en route.
	CopyMacroActive: dialog box
	The dialog box consistes of two list boxes, two buttons, and one checkbox.
	Macros in (templatename)
	This list displays all of the macros in the active template at the time of executing CopyMacroActive.
	Copy macro(s) to:
	This second list box will display the possible destination templates (it gathers them by cycling through all open document windows and determining the rulling template. Therefore if there is only one document open the macro will exit).
	Copy Selected
	This button copies only the currently selected macro (and then moves the selection to the next macro in the list).
	Copy All
	This button will copy all the macros in the list to the selected destination template.
	Encrypt
	This check box, if active, will encrypt the macro during the copy process.

	XE "CreateOutlineDoc"§CreateOutlineDoc
	This macro allows you to save only the heading text from a document to a second “outline” document.
	Why? When you collapse a Word for Windows document into Outline View and then select the outline, you are actually selecting all the text and levels beneath the visible outline. If you were to cut and paste to a second, blank document you would be copying everything.
	This macro allows you to create a document that reflects only the outline organization of its source document.
	CreateOutlineDoc: dialog box
	Outline Document Name
	This is the name used to save the newly created outline document. By default the name will be the file name portion of the document being converted with the document extension OTL appended.
	By default the OTL file will be saved in the same directory as the source document.
	If you wish to change either of these defaults, type the filename desired, or the full path desired, in the edit box.
	Outline Document Template
	By default the new document will be based on the same template as the source document. If the source document is a template itself, then the destination document will be based on NORMAL.DOT.
	If you have a standard outline template, you can enter it into the macro as the default. For example, if you have a template named OUTLINE.DOT used for all outlines, simply locate and change the line
	dlg.Template = Template$
	to
	dlg.Template = “OUTLINE”
	Keep Footnotes
	Keep Annotations
	Simply check the appropriate box to include footnotes and/or annotations in the new document.
	Be aware that the footnotes numbering will not be the same as the numbering in the original document since the footnotes that are in the text are ignored.
	Also, be aware that footnotes that do not have automatic numbering will be ignored.
	Expand to level
	You can specify how many levels of the outline you wish to preserve during the copy process.

	XE "DeleteIdleStyles"§DeleteIdleStyles
	This macro is useful if you have overloaded a document with unused (and sometimes unknown...) styles.
	This can happen when you convert from another word processor to Word for Windows, or when you combine documents from several different sources, or when you merge styles from another document or template (but don’t want all the styles to remain in the current document).
	Unfortunately, there is a limitation. There are several (thirty odd, I think) built in style names:

	· annotation reference,annotation text,footer,footnote reference,footnote “ + “text,header,heading 1,heading 2,heading 3,heading 4,heading 5,heading 6,heading 7,”heading 8,heading 9,index 1,index 2,index 3,index 4,index 5,index 6,index 7,index heading,”line number,Normal,Normal Indent,toc 1,toc 2,toc 3,toc 4,toc 5,toc 6,toc 7,toc 8,EnvelopeAddress,EnvelopeReturn
	Often you will see that a document that starts out with only Normal, Normal Indent, and Heading 1-3 suddenly has a list containing all of the above style names.
	There is no way to remove these styles from the style list once they appear. This is a feature in Word for Windows. Write Microsoft...
	When you run this macro you will be given an opportunity to cancel.
	Be careful not to run this macro unless you are sure that all the style names you wish to retain are actually in use in the document.
	Another Note:
	There is no reason (that I can think of) that you couldn’t remove user styles from a template by following these steps:

	· Load the DOT file directly.
	· Examine the user styles in the template
	· Apply those you wish to keep to separate paragraphs
	· Run the macro
	EncryptMacros
	This macro will display a list of macros in the currently active template and either encrypt all the macros, or allow you to specify which of the macros to encrypt
	WARNING: once a macro is encrypted, it cannot be unencrypted. BE SURE TO HAVE AN UNENCRYPTED VERSION OF ANY MACRO YOU ARE DEVELOPING BEFORE ENCRYPTING IT.
	See “EncryptTemplate”

	EncryptTemplate
	This macro will ask you to choose a template, and then will encrypt every macro in that template.
	Note: it does not pause for confirmation. When you load a template the macros contained in that template are encrypted. The macro does not, however, automatically save the newly encrypted template. So you do have the opportunity to discard the changes.
	WARNING: once a macro is encrypted, it cannot be unencrypted. BE SURE TO HAVE AN UNENCRYPTED VERSION OF ANY MACRO YOU ARE DEVELOPING BEFORE ENCRYPTING IT.
	See “EncryptMacros”

	FiddleNotesXE "FiddleNotes"§
	This is a simple macro that has four options:

	· Change all footnotes to annotations
	· Change all annotations to footnotes
	· Delete all footnotes
	· Delete all annotations
	There is only one caveat: Footnote References and Annotation References must all have the same style. A buglet in Word for Windows allows for styles in such references to get out of kilter (since changing a reference style does not apply retro-actively).
	Another macro in this package addresses this problem.
	See “ReInsertFootnotes” on page 22

	FileTemplateXE "FileTemplate"§
	Problem: automatically merging styles
	Templates are the repository of several useful aspects of Word for Windows. If you aren’t comfortable with the idea of a Template or the concept of Context, I strongly suggest you stare at the manual until it’s clear.
	Templates hold Macros, IconBar assignments, Key Assignments, Menu Assignments, Glossaries, and Styles.
	When you attach a template, or change the attached template, using the new FileTemplate command (used to be FormatDocument.Template...) you essentially change which of these assignments will now have sway over your document. That is, with the exception of styles.
	Changing a template does not automatically change the style definitions in the current document.
	The reason for this is that there are two separate lists of styles — those contained in the Template (where you probably defined the style) and those contained in the document itself.
	The included replacement for FileTemplate asks if you wish to change the current documents styles to match those contained in the template just selected for attaching...
	Here’s the dialog box.
	

	Answering Yes to this prompt would perform the exact equivalent of selecting FormatStyle, Define, Merge, selecting the same template as that chosen in the FileTemplate dialog box, and selecting To.
	For those of you who know the macro language, the short hand for this would be:
	FormatStyle .FileName = Template$, .Merge, .Source = 1
	Answering Yes, therefore, would replace any styles in the document with styles in the template of the same name. That is, Normal in the document would now look like Normal from the template. Styles that don’t already exist in the document will be added.
	See also “SyncStyles” on page 27

	MacroKeyXE "MacroKey"§
	(Ctrl-Shift-K for demo)
	Overview:
	Allows simple assignment and removal of key stroke combinations to macros (either global or template bound).
	Enhancements over the built in MacroAssignToKey:
	Allows the use of Alt-Char, Alt-Ctrl-Char, and Alt-Shift-Char. In the built in routine the first two combinations are disallowed. The last is reserved for Word for Windows’s use. Note that Word for Windows reserves these key sequences for it’s own use in many cases, so preventing you from reassigning them is a form of protection. Use this routine cautiously, and backup all DOT files before you experiment.
	Usage:
	Main dialog box
	You will be presented with a dialog which looks like this:
	

	The line above the list of macros will display the current template or document/template containing the macros.
	By default MacroKey displays the template macros (if there are any).
	Macros
	A Listbox of macros from the currently selected context. Select the macro you wish to assign a key to (or remove a key from).
	Key Combination
	Check the shift keys you wish to activate (Alt, Ctrl, Shift, in any combination), and then move to the Key list box and select the alphanumeric key you wish to assign to the selected macro.
	Buttons
	Show Global
	Displayed only if the current context is a template (and therefore Global macros are not visible) Selecting this button changes the list to display the macros from Normal.dot.
	Show Template
	This button is Displayed only if there is a template attached to the current document.
	Show Commands
	Selecting this button will display all of the built in command macros. Note, building a list of all macros — user and internal — take s fairly long time.
	Manage Keys
	This button will run a second macro (assuming it is installed) named ManageKeys. This macro will display a listbox of the current key assignments, and, optionally, allow you to create a document containing a table of those key assignments.
	See “ManageKeys” on page 20
	Special Keys
	choosing this button will display a dialog box of all supported special keys (Esc through Del...F1 ...F12). Try it, you’ll like it. Look:
	

	Remove
	this option checks to see if the currently selected macro has a keycode assigned to it. If so you are asked if you want to remove it. If not, a message displays at the bottom of the screen.
	CheckBoxes
	Show Current
	This check box will rebuild the list of macros, displaying the current key assignment (if any). This takes a significant amount of time. This function only shows key assignments made by the user, not key assignments that are internal to Word for Windows.
	Limitations:
	MacroKey will warn you if you are about to use a key combination that is already assigned to a macro. However, it will only warn you if the key combination in question is NOT one of the default assignments. That is, it must be an assignments you have made, rather than one that Word for Windows assumes is the case.
	Similarly, it does not warn you if you are about to use a key combination that is assigned to a style.
	Illegal keys
	It seems that any combination of keystroke with F1 will always call help. So it isn’t fair game.
	It seems that NumPad 5 (the numpad 5 that is activated by turning NumLock ON) does not accept shift characters. The NumPad 5 that is active in default state (NumLock OFF) does accept shift characters. The macro accounts for this oddity. Also note that the Unshifted NumLockOFF-5 cannot be assigned to a macro (this is the key, by the way, that is described as KeyCode 12 in the Technical Reference).
	The direction keys, listed on the Special Keys dialog box, have some limitations.
	No direction keys (Home, End, PgUp, PgDn, Right, Left, Down, Up) can be assigned to a macro.
	No direction key plus Ctrl can be assigned to a macro.
	No direction key plus Ctrl+Shift can be assigned to a macro.
	The Alt key plus Up and Down are legal. The Alt key plus Left and Right are not legal.
	MacroKey will not allow you to assign anything to Ctrl-Alt-Del (duh...)
	Sorting
	No sorting of the macros. The template macros will appear in the order you created them. The built in macros (if that option is checked) will appear in the order God created them.
	Focus
	MacroKey works best on a document, not on a template. That is, if you are editing a template directly there may be trouble. Base a blank document on the template and try again.

	MakeBookXE "MakeBook"§
	(alt-ctrl-b for demo)
	A slightly more complicated version of MakeWordBook, this macro takes the current selection and presents it for editing.
	Instead of grabbing the current word if there is not selection it grabs the current line.
	It presents the multi-word selection as a proposed bookmark, with spaces converted to underline marks
	It also checks for illegal characters (punctuation marks and the like) and replaces them with underscores.
	See “MakeWordBook”

	MakeWordBookXE "MakeWordBook"§
	(alt-ctrl-M for demo)
	This macro will first check to see if there is a block of text selected. If so, that selection will be inserted as a glossary name.
	If there is no selected text (just an insertion point cursor), then this macro will take the current word and make it a glossary name.
	This macro will check for duplicate glossary names and append the instance count to the word if there is already a glossary using the word as the mark. It does not, however check for illegal punctuation marks in the current selection.
	See “MakeBook”

	ManageKeysXE "ManageKeys"§
	This macro will display the current key assignments for the active context. If you are currently working on a document based on NORMAL.DOT, it will display the “global” key assignments. If you are working on a document based on LETTER.DOT, it will display the key assingments specific to the template LETTER.DOT.
	The dialog box look like:
	

	The List Box
	The list box displays three pieces of information:

	The macro that has a key assignment
	The mnemonic for the key combination
	The keycode for the key combination
	For instance, in the above list, the macro NextWindow is assigned to Ctrl+Tab, which is keycode 265.
	Buttons:
	Create Key List
	This button will create a new document (based on NORMAL.DOT) and generate a table containing all of the key assignments.
	Delete Selected
	This button will remove the currently selected key assignment.
	Note: It is possible for key assignments to appear in a template with not macro (apparently) associated with that key combination. If you see a line in the above list box that begins with a colon (and no macro name) you can pretty safely assume that somehow a bogus key assignment did not get nuked properly at some point. I’d delete it using ManageKeys.

	ManageMacrosXE "ManageMacros"§
	This is the orginal “copy macro” macro for Word for Widnows 2.0. A slightly different version exists in the Using WordBASIC companion disk.
	It differs from CopyMacroActive in that you can specify both the source and destination templates (neither has to be currently open).
	The dialog box looks like:
	

	Souce Template
	A list box of all the templates in your DOT-PATH.
	Destination Template
	The same list of templates
	You must specify both a source and a destination template.
	You can type a template name directly into the edit portion of the ComboBox.
	The buttons available (after selecting the templates) are:
	Copy All
	This button will open the working templates and copy all source macros to the destination in one pass.
	Confirm Each
	This button will begin the process of copying all macros from source to destination but will pause at each macro for confirmation.
	List Macros
	This macro will display a list box of macros in the source template.
	Copy
	This button is only relevant if you have entered a macro into the editbox to the right. This is useful if you wish to copy only one macro and you know the macro name.
	You can also, optionally, encrypt the macro en route from source to destination.
	Limitation
	The templates do not display in the list in alphabetical order. The more templates you have, the slower the macro is to load.
	In order for the templates to display sorted alphabetically, you must physically sort them on your hard disk with a utilitiy such as Norton’s DiskSort.
	See also “XE "CopyMacroActive"§CopyMacroActive” on page 15

	OpenMRUListXE "OpenMRUList"§
	A simple macro that simply opens all the documents found under the File menu (the Most Recently Used List).
	I would be useful as a startup command from Program Manager:

	C:WINWORDWINWORD.EXE /mOpenMRUList
	—would start Word for Windows and open the files on the MRU list.

	PrintRangeXE "PrintRange"§
	PrintRange is a simple macro that fills a major lack in Word for Windows
	Main Dialog Box
	

	Range

	Selecting this button will print the comma delimited list of page numbers entered into the box to its right.
	If you select Range then you will not be able to print Odd or Even pages.
	Even Pages

	Prints only the even pages in the current document.
	Odd Pages

	Prints only the odd pages in the current document.
	Reverse Print Order

	This check box is useful if you want to do “duplex” printing. Simple check this box, print all Even pages, then place the stack of pages back into the printer tray and print Odd Pages.
	Goto Standard FilePrint

	As a convenience, PrintRange allows you to call the standard FilePrint macro.
	Printer Setup

	Runs the standard Printer Setup macro to allow you to change the currently active printer.
	Limitation:
	At this time PrintRange is an either or proposition. That is, if you specify a Range you cannot also specify Odd or Even.
	That may come in the next version.

	ReInsertFootnotesXE "ReInsertFootnotes"§
	Note on Footnotes:
	If you change the character style definition of a footnote or an annotation reference) instances of footnote reference inserted prior to he re-definition will not change. Subsequent footnote insertions will have the new attributes.
	For example, if you begin inserting footnotes with the character definition of Red and Hidden, then change it to Blue and non-hidden, the already inserted footnotes will not change to the new style.
	Another manifestation of this problem arises if you select a paragraph that has a footnote in it, and press Ctrl-SpaceBar to reset the character formatting.
	The included macro, ResetFootAnnote does not, like the other gFixes, replace a built in command. It is a new command which you can execute in order to reinsert a footnote or an annotation.
	How it works
	There are two modes of operation:
	If the insertion point is currently positioned on a footnote reference or an annotation mark the macro will re-insert that footnote or annotation only and then stop.
	If the insertion point is not on a footnote reference or an annotation mark, it will prompt you for which to re-insert document wide with a dialog box:
	

	See also “FiddleNotes” on page 18

	SyncStylesXE "SyncStyles"§
	This simple macro does the equivalent of FormatStyle.Option.Merge. It is useful if you want to make sure that the styles in a document are always also stored in the template; or if you want to reset the styles contained in the current document to the styles as they are defined in the template.
	See also “FileTemplate” on page 18
	SyncStyles: dialog box:
	Copy TO
	If you select “Copy Document style TO template”, you will, in essence, be merging the styles contained in the document to the current document template.

	1. If a style exists in both the template and the document, the template definition is changed to match the current definition as it exists in the template.
	2. If a style does not exist in the template, but does exist in the document, it is added to the style list of the template (that is, future documents based on that template will now have the additional styles...).
	Copy FROM
	If you select “Copy FROM Template styles into the current document”, you will be merging all of the styles contained in the template into the current docuement.
	The effect of these actions is two fold:

	1. If a style exists in both the template and the document, that style is changed to match the template.
	2. If a style does not exist in the document, but does exist in the template, it is added to the style list.
	ToggleHiddenXE "ToggleHidden"§
	(Ctrl-Shift-H for demo)
	Toggle View Hidden — without going through the ToolsOptionsView dialogue box. I suggest assigning this to Ctrl-Shif-H.

	ToggleOutlineXE "ToggleOutline"§
	(Ctrl-Shift-O for demo)
	Toggles in and out of outline mode.

	TogglePicturesXE "TogglePictures"§
	Toggles the display of pictures and picture placeholders.
	Word for Windows will scroll faster through a complex document if pictures are not displayed.

	ToggleRevisionXE "ToggleRevision"§
	Toggle revision marks on and off.

	ToggleStyleBarXE "ToggleStyleBar"§
	Toggles the style bar on and off.

	ToggleViewToolsXE "ToggleViewTools"§
	(ctrl-shift-v for demo)
	There are seven “tools” that can be displayed on the Word for Windows screen:

	· ToolBar
	· Ribbon
	· Ruler
	· Status
	· Vertical Scrollbar
	· Horizontal Scrollbar
	· Style Bar
	The first three are controlled under the View menu. The last four are controlled under the ToolsOptionsView dialog box.
	This macro present a single, simple dialog box of seven checkboxes. It has three buttons (not counting Cancel...):

	On
	Off
	All On
	Setting tolerance for toggle
	There is a line in the macro that determines how many options need to be set to on before the macro will assume you want the default action to be OFF.
	That is, if three options are currently on, then make the default action for the push buttons to be Off.
	If less than three are on, leave the default as On.
	The line of code looks like:
	If Total >= 3 Then St = 2 Else St = 1

	Setting default minimum for on:
	If you examine the macro you will see that there is also a section you can customize to specify which group of options should be forced to on if everything is already off...
	That code looks like:
	If Total = 0 Then b = - 1 : vt = - 1 : v = - 1

	ToggleWindowXE "ToggleWindow"§
	Toggle the currently active document window split/zoomed.

	WindowStackXE "WindowStack"§
	Simply stacks the current document windows, leaving the title bars visible. There are two constants in the macro, HLap and VLap, which can be adjusted if the overlap does not suit your preferences.
	The macro is not device dependent. It should work at all monitor resolutions.

	WinSideBySideXE "WinSideBySide"§
	(Ctrl-Shift-B for a demo)
	Arranges the document Windows side by side. If there are more than two active windows you are prompted for which window to arrange next to the currently active document.

	gLibXE "gLib" r "TheEnd"§
	Overview
	When you open GTOOLBOX.DOC you will automatically install the library of routines found in a macro called GLIB. This macro will be automatically copied to your NORMAL.DOT.
	The reason for this is two fold:

	1) Word for Windows version 2.0 allows one to call sub routines and functions contained in another macro. By placing several commonly used subroutines in one place, the other macros are smaller.
	2) The subroutines and functions found in GLIB can be used by your own macros. In essence, it adds many new macro functions to WordBasic.
	In order to use these functions in your own macros you simply must 1) make sure gLib is installed in your Normal.dot and 2) call the function prefaced by the library name: gLib.FunctionName.
	Warning
	If you modify any of the routines in the gLib library, be sure the increment the version number.
	Subsequent installations of gToolBox (this version or a newer version) will check to see what the version number of the library is. If it is the same as the library to be installed nothing is coped.
	If it is less than or gerater than the library to be installed the current library will be copied to another macro named gLibBAK.

	Main dialog box
	If you run gLib itself, you will see a listing of the subroutines and functions it contains:
	

	gLib Reference
	ActivatePartial(Doc$)
	This subroutine can be used to supplement the built in command Activate WindowName$. The difference between the two is that this procedure only requires a partial name, whereas the built in command requires that you know precisely what’s up there on the document bar.

	e.g.
	ActivatePartial(“GTOOL”)
	Will cycle through each open window and stop at the first one whose title contains the letters “gtool” (not case-sensitive).
	CheckLib
	This function returns the version number of gLib.

	If glib.CheckLib Then Print “Okay”
	Chew$(Source$,Marker$)
	A string function that returns the left portion of a string up to the occurence of the marker.
	The source string is truncated. So, for instance:
	S$ = “one|two|three|four”

	—would display four mesage boxes, containing one, two, three and four, in sequence.
	CountChar(Source$, Char$)

	A function that returns the number of occurences in a string of a specific character:
	x = gLib.CountChar(“one,two,three”,”,”)
	—would return 2.
	fExist(FullPathName$)

	This function returns -1 if the specified file was found; 0 if not.
	fFileCount(FileSpec$)

	This function counts the number of files in a directory:
	DotCount = gLib.fFileCount(“c:winword*.dot”)
	fFileName$(b$)
	This function returns the filename portion of a full path name.

	Name$ = gLib.fFileName$(“c:winwordnormal.dot”)
	would return “normal”.
	fFileNameExt$(b$)
	Returns the filename plus extension from a full path designation.

	Name$ = gLib.fFileNameExt$(“c:winwordnormal.dot”)
	would return “normal.dot”.
	fStr$(Num)
	Returns a formatted string from an integer, stripping the padding Word places in front of a digit.
	GetDocDir$
	Returns the directory in which a document is stored.
	If this function is called from within a macro pane it returns a null string.
	GetFile(FullName$,Dir$,Default$)
	Displays the FileOpen dialog box.
	GetPath$(Source$)
	Strips out a path from a full file/path specification
	GetTemplate$
	Returns the current document’s template
	gLibInstalled(Macro$)
	This function is unique in the package. It should be used, not from within the gLib macro, but should be copied into any macro that calls a gLib routine.
	What it does is use the same logic as MacroExist to determine if there is, in fact, a macro named gLib in the current Normal.dot.
	This allows you to test at the top of a macro that requires gLib if the library is installed. It displays a warning message and request for re-installation.
	If you look at almost any of the more complicated macros in gToolBox you will see an example of how this is used.
	gMsg(Msg$,Title$)
	Displays a message with an attention sign.
	gQuery(Msg$,Title$)
	Displays a query dialog box.
	HasKey(Macro$,Context)
	Returns whether or not a macro in the given context has a key assignment.
	Inject$(Source$, New$, Place)
	A string function to insert a string within a string at a given place.

	Name$ = gLib.Inject$(Name$(“Guy Gallo”, “J. “,4)
	—would return “Guy J. Gallo”
	IsMacroPane([MacroName$])
	Returns -1 if the focus is currently on a macro editing window
	MacroName$ is an optional parameter containing the name of the macro calling the function. This is so that the warning message will be smart and tell you the name of the macro causing trouble...
	KeyDescription$(KeyCode)
	This function returns a string mnemonic for the specified KeyCode.
	lHelp(HelpFileName$)
	Loads the specified HLP file.

	glib.lHelp(“gtools.hlp”)
	—would load the windows help engine and attempt to load the file GTOOLS.HLP.
	(Both this and the following sub routine were adapted (very slightly) from a routine by Julianne Sharer of WexTech Systems.)
	lcHelp(ContextNumber,HelpFileName$)
	Loads the specified HLP file with a context number.

	glib.lHelp(2,”gtools.hlp”)
	—would load the windows help engine and attempt to load the file GTOOLS.HLP and moves to the help page specifed by the context number 2.
	ListMacros$(Context,All)
	A simple fuction that displays a list of macros and returns the selected macro or a null string (if cancelled)
	It will displays a list box of all macros in the specfied context (0 for global and 1 for the current template).
	If All is 0 then only user macros will be displayed. If All is 1 then the built in commands will also be displayed.
	Limitation: this routine does not sort the list of user macros. User macros are displayed in the order they were created.
	The built in commands, for who knows what reason, are also not sorted alphabetically...
	A sort routine (found in WOPR) could be added, but it would significantly slow things down.
	LoopMsg(Message$)
	This is an extremely useful function, to be used while writing macros. It’s purpose is to display the value of any number of variables during the execution of a loop.
	For example:
	Loop = -1 ’set the boolean variable Loop to true

	When the function displays the variables, you have two choices, OK and Quit the loop.
	If you quit the loop the variable Loop is set to false, the loop continues on it’s way without displaying a message...
	MacroExist(Macro$)
	Returns True or False (-1/0) if a macro exists.
	Takes a string argument in the same form as IsExecuteOnly.

	MacroExist([TemplateName:]MacroName)
	e.g. MacroExist(“NORMAL.DOT:GLIB”)
	If the template name is omitted the macro will look in the current document’s template first and then in the global context.
	NoSlash(Source$)
	This function checks to see if the last character in a string is a backslash and if so, strips it off. This is useful for properly formatting a path specification for ChDir.
	NukeTopMenu
	Dangerous. Will rename all of the top menus to a space character.
	To be used in conjuntion with ResetTopMenus and the internal command RenameMenu.
	Replace$(Source$, Old$, New$)
	This function replaces every occurence in a string of one string with another string.

	N$ = glib.Replace(“h*e*l*l*o”,”*”,”_”)
	—would return the string “h_e_l_l_o”
	ResetTopMenu
	Resets the top menus to the default names. Used by a macro that calls NukeTopMenu.
	Reverse$(Source$, Marker$)
	This function rearranges a string along a given character or group of characters. This is useful, in combination with Replace$() when you want to change LastName,FirstName into Firstname LastName. For example:
	Name$ = “Gallo,Guy”

	After these three lines the variable Name$ would hold the string “Guy Gallo”.
	SameFormat
	Returns true if every character in the selection has the identical character attributes.
	If any character in the selection has a different character attribute it returns false.
	SelectSameFormatRight
	Extends the selection until encountering a different character format from the starting point.
	This is used by ReInsertNotes.
	This subroutine calls another function in gLib, named SameFormat
	Sub SelectSameFormatRight ’Extends the selection until some part of the character

	A corresponding SelectSameFormatLeft could easily be implemented as well.
	Split(Source$, Marker$, First$, Second$)
	This is a subroutine that will take a string and divde it in two at a specific point.
	For example, if Source$ = “Guy+Gallo”, the command

	gLib.Split(Source$,”+”,First$,Second$)
	would return store “Guy” in the variable First$, and “Gallo” in the variable Second$.
	Trim$(Source$, ZapChar$)
	This function strips a character from both sides of a string. So, for instance:

	Pad$ = “****Test****”
	Unpad$ = gLib.Trim$(Pad$,”*”)
	—would return, in the variable Unpad$, the string “Test”
	Wait(Seconds)
	Not astronomically accurate... I think it’s dependent on CPU speed... but still useful in debugging and testing macros...

	Glossary of Terms
	Gadfly (WinWord Gadfly Team)
	Back in the early days of Word for Windows there was a forum on CompuServe where the pioneers gathered. A handful of the programmers and testers from Microsoft joined conversations and answered questions and fielded attacks and complaints. They signed their messages “WinWord Development Team”. I took to signing mine “WinWord Gadfly Team.”
	Global
	Global refers to macros and customizations stored in NORMAL.DOT.
	Template
	A template is used to store document class specific customizations, such as menu and key assignments specific to creating a letter or a memo.

	Index

